Distinct muscarinic receptors inhibit release of gamma-aminobutyric acid and excitatory amino acids in mammalian brain.

AUTOR(ES)
RESUMO

Intracellular recordings were made from neurons of rat lateral amygdala, nucleus accumbens, and striatum in vitro. Synaptic potentials mediated by gamma-aminobutyric acid and by excitatory amino acids were isolated pharmacologically by using receptor antagonists, and their amplitudes were used as a measure of transmitter release. Muscarine and acetylcholine inhibited the release of both gamma-aminobutyric acid and excitatory amino acids, but measurements of the dissociation equilibrium constants for the antagonists pirenzepine, 11-(2-[(diethylamino)methyl]-1-piperidinyl)acetyl-5,11-dihydro-6H-pyrido [2,3-b][1,4]benzodiazepine-6-one, methoctramine, and hexahydrosiladifenidol indicated clearly that different muscarinic receptors were involved (M1 and probably M3, respectively). The differential localization of distinct muscarinic receptor subtypes on terminals releasing the major inhibitory and excitatory transmitters of the brain could be exploited therapeutically in some movement disorders and Alzheimer disease.

Documentos Relacionados