Distinct Domains within Vps35p Mediate the Retrieval of Two Different Cargo Proteins from the Yeast Prevacuolar/Endosomal Compartment

AUTOR(ES)
FONTE

The American Society for Cell Biology

RESUMO

Resident membrane proteins of the trans-Golgi network (TGN) of Saccharomyces cerevisiae are selectively retrieved from a prevacuolar/late endosomal compartment. Proper cycling of the carboxypeptidase Y receptor Vps10p between the TGN and prevacuolar compartment depends on Vps35p, a hydrophilic peripheral membrane protein. In this study we use a temperature-sensitive vps35 allele to show that loss of Vps35p function rapidly leads to mislocalization of A-ALP, a model TGN membrane protein, to the vacuole. Vps35p is required for the prevacuolar compartment-to-TGN transport of both A-ALP and Vps10p. This was demonstrated by phenotypic analysis of vps35 mutant strains expressing A-ALP mutants lacking either the retrieval or static retention signals and by an assay for prevacuolar compartment-to-TGN transport. A novel vps35 allele was identified that was defective for retrieval of A-ALP but functional for retrieval of Vps10p. Moreover, several other vps35 alleles were identified with the opposite characteristics: they were defective for Vps10p retrieval but near normal for A-ALP localization. These data suggest a model in which distinct structural features within Vps35p are required for associating with the cytosolic domains of each cargo protein during the retrieval process.

Documentos Relacionados