Discharges of pyramidal tract and other motor cortical neurones during locomotion in the cat.

AUTOR(ES)
RESUMO

A method is described for chronically implanting fine flexible microwires into cat motor cortex, which permitted extracellular recordings to be made from 165 single neurones. Most units were recordable for 12 h and some for up to 2 days. Of the neurones tested, 57% were shown to project to the medullary pyramid (pyramidal tract neurones, p.t.n.s). Antidromic latencies corresponded to a range of conduction velocities from 63 to 9 m/s. In the animal at rest neurones discharged at rates from 0.5 to 44 impulses/s. During locomotion at 0.5 m/s (a slow walk) 56% of cells discharged faster than at rest and 80% showed frequency modulations time-locked to the step cycle. Most fired one discrete burst of impulses per step or one peak period superimposed on a maintained discharge. In different cells peak activity occurred at widely different times during the step cycle. A few cells peaked twice per step. Peak rates (averaged over twenty steps) ranged from 10 to over 120 impulses/s, the values for most slow-axon p.t.n.s (conduction velocity less than 21 m/s) being lower than for any of the fast-axon p.t.n.s. For locomotion at speeds between 0.37 and 1.43 m/s a roughly linear relationship existed between discharge rate and speed in 14% of cells. However, the changes were modest and in most cells both mean rate and peak rate were unrelated to speed. In some cells discharge phasing was fixed (relative to the step cycle in the contralateral forelimb); in others there were progressive phase shifts (or more complex changes) as speed increased. During locomotion up a 10 degrees incline discharge phasings were the same as on the flat in all of the twenty-seven neurones studied and most showed no substantial change in mean rate or peak rate (although there were substantial increases in limb muscle electromyogram amplitudes).

Documentos Relacionados