Dinâmica molecular de proteínas: estabilidade e renaturação / Protein Molecular Dynamics: stability and thermal renaturation

AUTOR(ES)
DATA DE PUBLICAÇÃO

2009

RESUMO

Proteínas são heteropolímeros lineares essenciais à vida, responsáveis pela estruturação dos organismos e pela maioria dos processos bioquímicos que os mantêm vivos e permitem sua reprodução. Essa variedade de funções é refletida na diversidade estrutural encontrada no universo das proteínas, já que sua função é intrinsecamente ligada à sua rigorosa conformação espacial. A partir dos experimentos de Anfinsen (1973), ficou demonstrado que o enovelamento dessas moléculas (folding) se dá essencialmente por meio de um processo físico-químico guiado pela interação entre os aminoácidos da cadeia protéica e entre estes e o meio solvente, quando sob condições fisiológicas (temperatura, pressão, pH). O completo entendimento do mecanismo de folding tem também importância médica, pois várias doenças como mal de Alzheimer, diabetes tipo II, encefalite bovina espongiforme e várias formas de câncer estão relacionadas com falhas estruturais das proteínas. Neste trabalho, por meio de experimentação computacional por dinâmica molecular (DM) em diferentes condições térmicas, estudamos inicialmente o papel das pontes dissulfeto (S-S) e das ligações de hidrogênio (LH) na estabilidade da proteína. Em seguida, adotando exclusivamente o regime de alta temperatura (T = 448K) em combinação com simulações de longa duração (até ~100ns), no intuito de expandir a exploração do espaço configuracional, verificamos a premissa de que as forças entrópicas, geradas pelo efeito hidrofóbico, seriam dominantes no processo de busca pela estrutura nativa. Neste trabalho foi utilizada como um protótipo de proteína pequena e com pontes S-S, a toxina Ts Kappa (MM=3,8 Kda; pdb id: 1tsk), que é dotada de três pontes S-S. A estabilidade conformacional foi analisada por meio de uma série de simulações de DM em temperaturas crescentes e em duas situações: com e sem os cross-links S-S. Nossos resultados indicam que para incrementos nas temperaturas significativamente elevadas, como 50K acima da temperatura em que a estrutura nativa foi determinada por NMR (283K), a remoção das S-S não compromete a estabilidade conformacional da proteína. De fato, a ausência dos cross-links elimina certas restrições geométricas permitindo agora que diferentes combinações de LH sejam feitas, inclusive entre resíduos adjacentes à cisteína, os quais de certa forma substituem as pontes S-S em seus papeis conformacionais pois a estrutura nativa é essencialmente mantida. No segundo experimento o espaço configuracional foi varrido extensamente durante 100ns e à temperatura de 398K. No caso da Ts Kappa com suas pontes dissulfeto intactas, a desestruturação da proteína é limitada pelas fortes pontes covalentes S-S, mas com a remoção delas, a proteína se desnaturou completamente ao longo dos primeiros 50ns. Contudo, a partir deste ponto a cadeia desnaturada passou a seguir, de forma espontânea e sistemática, uma rota de re-estruturação em direção à nativa, com o reestabelecimento de todas suas estruturas secundárias. Ao redor de 100ns a cadeia atingiu um estado de grande identidade estrutural com sua correspondente estrutura nativa. Em conclusão, os presentes resultados corroboram as premissas de que o folding de proteínas ocorre por meio de um processo em duas etapas, temporalmente separadas: no início, as forças entrópicas são dominantes e são as que induzem a cadeia para a conformação nativa. Então, uma vez na vizinhança da estrutura nativa, as pontes de hidrogênio (agora protegidas da competição com o meio solvente), juntamente com um mais eficiente empacotamento estrutural das cadeias laterais devido às complementaridade estéricas das mesmas (e assim otimizando as interações de van der Waals), iniciam a etapa de estabilização energética da proteína.

ASSUNTO(S)

estabilidade térmica ts kappa folding de proteína molecular dynamics thermal stability protein folding ts kappa dinâmica molecular.

Documentos Relacionados