Dilatometric studies of (SiO2-RE2O3-Al2O3) silicon carbide ceramics

AUTOR(ES)
FONTE

Materials Research

DATA DE PUBLICAÇÃO

2005-06

RESUMO

Silicon carbide is an important structural ceramic and finds applications as abrasives, as a refractory and in automotive engine components. This material can attain high densities during liquid phase sintering if suitable additives are used. Silicon carbides containing silica, alumina and rare earth oxides have suitable characteristics to promote liquid phase sintering. In this paper, the sintering behavior of silicon carbide ceramics with additives based on the (SiO2-RE2O3-Al2O3) system (RE = Y, Dy) has been studied. Samples with different compositions and containing 90 vol.% SiC were sintered in a dilatometer at 1950 °C/1h and in a graphite resistance furnace from 1500 °C/1h up to 1950 °C/1h. The shrinkage behavior as a function of rare earth oxide used and additive composition was also studied. The sintered materials were characterized by density and weight loss measurements. The crystalline phases were identified by X-ray diffraction analysis. The sintering kinetics of these materials can be related to the formation of secondary crystalline phases.

Documentos Relacionados