Differential amylosaccharide metabolism of Clostridium thermosulfurogenes and Clostridium thermohydrosulfuricum.

AUTOR(ES)
RESUMO

Clostridium thermosulfurogenes displayed faster growth on either glucose, maltose, or starch than Clostridium thermohydrosulfuricum. Both species grew faster on glucose than on starch or maltose. The fermentation end product ratios were altered based on higher ethanol and lactate yields on starch than on glucose. In C. thermohydrosulfuricum, glucoamylase, pullulanase, and maltase were mainly responsible for conversion of starch and maltose into glucose, which was accumulated by a putative glucose permease. In C. thermosulfurogenes, beta-amylase was primarily responsible for degradation of starch to maltose, which was accumulated by a putative maltose permease and then hydrolyzed by glucoamylase. Regardless of the growth substrate, the rates of glucose, maltose, and starch transformation were higher in C. thermosulfurogenes than in C. thermohydrosulfuricum. Both species had a functional Embden-Meyerhof glycolytic pathway and displayed the following catabolic activities: ferredoxin-linked pyruvate dehydrogenase, acetate kinase, NAD(P)-ethanol dehydrogenase, NAD(P)-ferredoxin oxidoreductase, hydrogenase, and fructose-1,6-diphosphate-activated lactate dehydrogenase. Ferredoxin-NAD reductase activity was higher in C. thermohydrosulfuricum than NADH-ferredoxin oxidase activity, but the former activity was not detectable in C. thermosulfurogenes. Both NAD- and NADP-linked ethanol dehydrogenases were unidirectional in C. thermosulfurogenes but reversible in C. thermohydrosulfuricum. The ratio of hydrogen-producing hydrogenase to hydrogen-consuming hydrogenase was higher in C. thermosulfurogenes. Two biochemical models are proposed to explain the differential saccharide metabolism on the basis of species enzyme differences in relation to specific growth substrates.

Documentos Relacionados