Different distribution of fluorinated anesthetics and nonanesthetics in model membrane: a 19F NMR study.

AUTOR(ES)
RESUMO

Despite their structural resemblance, a pair of cyclic halogenated compounds, 1-chloro-1,2,2-trifluorocyclobutane (F3) and 1,2-dichlorohexafluorocyclobutane (F6), exhibit completely different anesthetic properties. Whereas the former is a potent general anesthetic, the latter produces no anesthesia. Two linear compounds, isoflurane and 2,3-dichlorooctofluorobutane (F8), although not a structural pair, also show the same anesthetic discrepancy. Using 19F nuclear magnetic spectroscopy, we investigated the time-averaged submolecular distribution of these compounds in a vesicle suspension of phosphatidylcholine lipids. A two-site exchange model was used to interpret the observed changes in resonance frequencies as a function of the solubilization of these compounds in membrane and in water. At clinically relevant concentrations, the anesthetics F3 and isoflurane distributed preferentially to regions of the membrane that permit easy contact with water. The frequency changes of these two anesthetics can be well characterized by the two-site exchange model. In contrast, the nonanesthetics F6 and F8 solubilized deeply into the lipid core, and their frequency change significantly deviated from the prediction of the model. It is concluded that although anesthetics and nonanesthetics may show similar hydrophobicity in bulk solvents such as olive oil, their distributions in various regions in biomembranes, and hence their effective concentrations at different submolecular sites, may differ significantly.

Documentos Relacionados