Developmental-stage-specific expression and regulation of an amphotropic retroviral receptor in hematopoietic cells.

AUTOR(ES)
RESUMO

Expression of the transmembrane receptor protein Ram-1 may be critical to optimizing retroviral gene transfer. Ram-1 acts as both a sodium-dependent phosphate transporter and a receptor for amphotropic retroviruses. We previously reported detectable Ram-1 in murine hematopoietic fetal liver cells (FLC) despite resistance of these cells to amphotropic retroviral transduction (infection). We document here that Ram-1 expression is completely absent in murine yolk sac cells from days 9.5 through 13.5 of ontogeny and first appears at low levels in midgestational FLC between days 13.5 and 14.5. In addition, Ram-1 expression is detected only in more differentiated populations within FLC, day 14.5, and not in those highly enriched for stem cells, indicating developmental regulation of Ram-1 during murine hematopoiesis. Others have reported the in vitro use of phosphate-free medium as a stimulus to increase levels of Ram-1 mRNA in nonhematopoietic cells. We now demonstrate that Ram-1 poly(A)+ mRNA increases significantly following culture of FLC in phosphate-free medium. Further, transduction of FLC in phosphate-free medium with an amphotropic retrovirus containing the multiple drug resistance gene leads to gene transfer not observed previously. These data demonstrate that (i) the normal resistance of FLC to amphotropic transduction is most likely due to an insufficient number of Ram-1 molecules for efficient retroviral recognition and binding, and (ii) Ram-1 can be upregulated by increasing the need for phosphate transport across the cell membrane.

Documentos Relacionados