"Development of the instrumentation and automatic analytical procedures for spectrophotometric determination of surfactants in waters" / "Desenvolvimento de instrumentação e procedimentos analíticos automáticos para a determinação espectrofotométrica de tensoativos em águas"

AUTOR(ES)
DATA DE PUBLICAÇÃO

2006

RESUMO

"In this work, development of the instrumentation and automatic analytical procedures for spectrophotometric determination of surfactants in waters employing the multicommutation concept were proposed. Aiming to system miniaturization, reduction of reagents consumption and effluents generation, solenoids micro-pump and solenoids pinch valves were used for the fluids propulsion and for solutions management, respectively. These devices were controlled by a microcomputer equipped with an electronic interface based on the integrate circuit ULN2803A that was coupled to the printer output. As system detection was employed an spectrophotometer model HP8452A, a multichannel spectrophotometer with CCD array linear arrangement of photodetectors and a homemade LED based photometer comprising two LEDs (blue and red) as radiation source and a photodiode (IPL10530DAL) as detector. In this case, the data acquisition was accomplished with a digital multimeter with serial out put RS232 employing a software wrote in VISUAL BASIC 3.0. The software comprised also routines to control the analysis module. Firstly, instrumentation and analytical procedures for independent determination of anionic and cationic surfactants in waters were developed. The same flow system comprised of four solenoid micro-pumps and it was employed for both surfactants. The procedure proposed for the determination of anionic surfactant was based on the substitution reaction of orange methyl (MO) by anionic surfactant (sodium dodecylbenzene sulfonate - DBS) to form an ion-pair with the cetyl pyridine (CPC) at pH 5.0. The proposed instrumentation allowed the achievement of a lineal response range between 1.4 x 10-6 mol L-1 and 1.4 x 10-5 mol L-1 (0.5 – 5.0 mg L-1) (R = 0.997, n = 7), a detection limit of 9.8 x 10-8 mol L-1 (0.034 mg L-1), a relative standard deviation of 0.8% (n = 11) for a reference solution containing 5.7 x 10-6 mol L-1 (2.0 mg L-1) DBS and sampling throughput of 60 determinations per hour. Results obtained applying the proposed procedure for domestic and industrial effluent samples were compared with those obtained using reference method and no significant differences at the 95 % confidence level was observed. For the determination of cationic surfactant in waters the procedure was developed based on the ternary complex formation between CPC, Fe (III) and chromazurol S at pH 4.5. The proposed system comprised a flow cell device with 40 mm optical path-length presented the following features: a linear response range between 0.1 x 10-5 mol L-1 e 3.0 x 10-5 mol L-1 (0.34 – 10.2 mg L-1) (R = 0.999, n = 9); a detection limit of 1.0 x 10-7 mol L-1 (0.035 mg L-1); a relative standard deviation of 0.6 % (n = 11) for a reference solution containing 1.0 x 10-5 mol L-1 (3.4 mg L-1) CPC; and a sampling throughput of 72 determinations per hour. The procedure was applied to samples waters collected in the Piracicaba River. Using standard addition test recoveries between 91 % and 106 % were observed. The flow network for the sequential determination of anionic and cationic surfactants comprised two solenoid micro-pumps and six solenoid pinch valves. Employing the system proposed for the determination of anionic surfactants the folowing analytical characteristics: linear response range between 0.1 x 10-5 mol L-1 e 3.0 x 10-5 mol L-1 (0.35 – 10.5 mg L-1) (R = 0.9992, n = 7); a detection limit of 1.6 x 10-7 mol L-1 (0.056 mg L-1); a relative standard deviation of 0.6 % (n = 11) for a reference solution containing 1.0 x 10-5 mol L-1 (3.5 mg L-1) DBS were observed. For cationic surfactants a linear response range between 0.1 x 10-5 mol L-1 e 3.0 x 10?5 mol L-1 (0.34 - 10.2 mg L-1) (R = 0.9992, n = 7), a detection limit of 1.4 x 10-7 mol L-1 (0.05 mg L-1), a relative standard deviation of 0.5 % (n = 11) for a reference solution containing 1.0 x 10-5 mol L-1 (3.4 mg L-1) CPC were observed. In both cases, the reagents and sample consumption were 400 mL and 200 mL, respectively. The sampling throughput of 60 determinations per hour was achieved for both surfactants. The system was applied to waters samples from the Corumbataí River. The results obtained using the standard addition test presented recoveries between 91 % and 105 %. Applying t-test between the results obtained by the proposed procedures and those obtained using reference procedures showed that for anionic and cationic surfactants, the results were concordant at 95% confidence level."

ASSUNTO(S)

multicomutação spectrophotometry flow injection analysis águas análise por injeção em fluxo multicommutation water surfactants espectrofotometria tensoativos mini-bombas micro-pumps

Documentos Relacionados