Development of palladium nanoparticle catalysts for hydrodechlorination reaction / Desenvolvimento de catalisadores de paládio nanoparticulado para a reação de hidrodescloração

AUTOR(ES)
DATA DE PUBLICAÇÃO

2009

RESUMO

The hydrodechlorination reaction (HDC) has received great attention as an alternative treatment of organic residues, which is more efficient than incineration, especially for aromatic organic compounds, and avoids the formation of toxic species, such as furans and dioxins. The present study is focused on the preparation of supported palladium nanocatalysts for HDC. In order to facilitate the separation of the catalyst from the reaction medium and its reuse in successive reactions solid supports with magnetic properties were employed and strategies for the immobilization of metal nanoparticles on the surfaces of these supports were developed. For this purpose a catalyst support comprised of magnetic nanoparticles coated by a protective dense silica layer was developed. The magnetic nuclei were prepared by the co-precipitation method followed by silica coating by a reverse microemulsion. The strategy used for the preparation of supported Pd nanoparticles was first the functionalization of the support surface, immobilization of Pd (II) precursors and than metal reduction by hydrogen under mild conditions. As a result, Pd nanoparticles well-dispersed on the functionalized support were obtained, although the size of the Pd nanoparticles was tuned by the ligand grafted on the support surface. Amine and ethylenediamine functionalized supports formed Pd nanoparticles of 6,4 ± 1,4 nm and 1,3 ± 0,3 nm, respectively. In the catalytic tests of ciclohexene hydrogenation, the amino-functionalized catalyst showed the best performance compared to the ethylenodiamine functionalized support. For the HDC reaction, the most favorable reaction conditions to reach the highest substract conversion rates while preserving the catalyst structure were studied. Chlorobenzene was selected as substrate for the HDC experiments. Initial tests using different bases and solvents suggested that triethylamine in isopropanol are the best conditions for good conversion rates without meaningful change in the support structure after reaction. The metal leaching was negligible in all reactions studied with respect to the initial metal loading. The HDC reactions in acetate and carbonate buffer solutions also resulted in good conversion rates, while the catalyst activity began to decrease only in the fourth cycle. Buffer medium is an interesting less aggressive alternative for HDC reactions, but still very little exploited

ASSUNTO(S)

separação magnética hydrodechlorination paládio palladium magnetic separation catalysis nanopartículas nanoparticles catálise hidrodescloração

Documentos Relacionados