Detection of Gene Expression in Genetically Engineered Microorganisms and Natural Phytoplankton Populations in the Marine Environment by mRNA Analysis

AUTOR(ES)
RESUMO

A simple method that combines guanidinium isothiocyanate RNA extraction and probing with antisense and sense RNA probes is described for analysis of microbial gene expression in planktonic populations. Probing of RNA sample extracts with sense-strand RNA probes was used as a control for nonspecific hybridization or contamination of mRNA with target DNA. This method enabled detection of expression of a plasmid-encoded neomycin phosphotransferase gene (nptII) in as few as 104Vibrio cells per ml in 100 ml of seawater. We have used this method to detect expression of the ribulose-1,5-bisphosphate carboxylase large-subunit gene (rbcL) in Synechococcus cultures and natural phytoplankton populations in the Dry Tortugas, Florida. During a 36-h diel study, rbcL expression of the indigenous phytoplankton was greatest in the day, least at night (1100, 0300, and 0100 h), and variable at dawn or dusk (0700 and 1900 h). These results are the first report of gene expression in natural populations by mRNA isolation and probing. This methodology should be useful for the study of gene expression in microorganisms released into the environment for agricultural or bioremediation purposes and indigenous populations containing highly conserved target gene sequences.

Documentos Relacionados