Desenvolvimento de um simulador para espectrometria por fluorescência de raios X usando computação distribuída / Development of a X-ray fluorescence spectrometry simulator using distributed computing

AUTOR(ES)
FONTE

IBICT - Instituto Brasileiro de Informação em Ciência e Tecnologia

DATA DE PUBLICAÇÃO

30/03/2012

RESUMO

Radiation Physics is a branch of Physics that is present in various studying areas and relates to the concept of spectrometry. Among the numerous existing spectrometry techniques, there is the X-ray fluorescence spectrometry. It also has a range of variations which can emphasize a particular subset of techniques. The production of X-ray fluorescence enables (in some cases) the analysis of physical and chemical properties of a given sample, allowing the determination of its chemical constitution and also a range of applications. However, the experimental analysis may require a large workload, both in terms of physical apparatus and in relation to technical knowledge. Thus, the simulation comes into play as a viable path between theory and experiment. Through the Monte Carlo method, which uses the manipulation of random numbers, the simulation is a kind of alternative to the experimental analysis. It develops this role by a modeling process, within a secure environment and risk free. And it can count on high performance computing in order to optimize all the work through the distributed architecture. The aim of this paper is the development of a computational simulator for analysis and studying of X-ray fluorescence systems developed on a communication platform distributed natively, in order to generate optimal data. As results, has been proved the viability of the simulator implementation through the CHARM++ language, a language based on C++ which incorporate procedures to distributed processing, the value of the methodology to system modelling e its application to build a simulator for X-ray fluorescence spectrometry. The simulator was built with the ability to reproduce a eletromagnetic radiation source, complex samples and a set of detectors. The modelling of the detectors embody the ability to yield images based on recorded counts. To validate the simulator, the results were compared with the results provided by other known simulator: MCNP.

ASSUNTO(S)

espectrometria por fluorescência de raios x simulação de monte carlo computação de alto desempenho fisica da materia condensada x-ray fluorescence spectrometry monte carlo simulation. high performance computing

Documentos Relacionados