Deficiência hídrica e aplicação de ABA sobre as trocas gasosas e o acúmulo de flavonóides em calêndula (Calendula officinalis L.) / Water deficit and ABA application on leaf gas exchange and flavonoid content in marigold (Calendula officinalis L.)




It was evaluated the effects of water deficit and abscisic acid (ABA) application on some physiological parameters and flavonoid production in marigold plants. It was tested four intervals of withholding water (control - diary irrigation, 3, 6 and 9 days without irrigation) accomplished of 3 concentrations of ABA (0, 10 e 100 µM), resulting in 12 treatments. The experiment was performed under nursery conditions with plotted plants. The treatments were applied in the beginning of blooming and their effects were evaluated by the relative water content (RWC) and leaf gas exchange (A= net photosynthesis, gs= stomatal conductance, E= evaporation, Ci= CO2 intercellular concentration and TL=leaf temperature); using a portable infrared gas analyzer. The water use efficiency (EUA) was calculated as A?E. At 3 days of water suppression the marigold plants did not showed significant alterations in leaf gas exchange evaluated parameters. At 6 days of water deficit the parameters Ci, RWC and EUA did not showed difference in relation to the treatments with daily irrigation, added or not of ABA. However, the water stress plus ABA application resulted in smaller values of E, gs and A in relation to control plants. At 9 days of water deficit there were drastic changes in the plants, with significant reductions in all leaf gas exchange parameters evaluated in relation to control treatments (daily irrigation with or without ABA). It was concluded that exogenous ABA application mimics the plant photosynthetic responses to water stress, and the main ABA effect was to cause a reduction on gs. However, this gs reduction only was accomplished of a reduction in A when the plants were submitted to the water deficit. The residual effect of ABA in plants was only 7-8 days and so, the differences observed at the 6 days of water deficit were probably inducted by the ABA, yet differences observed at the 9 days were exclusively caused by the water deficit. There was no significant difference among the different levels of water deficit used in relation to total flavonoids content in inflorescences of marigold. However, ABA application resulted in a reduction of almost 50% in flavonoids content, in well watered plant as well as stressed plants, for all levels of water deficit tested. It was concluded that ABA restricts the biosynthetic rote of flavonoids.


fisiologia vegetal flavonóides compositae plantas medicinais. balanço hídrico leaf gas exchange flavonoids. medicinal plant water deficit

Documentos Relacionados