Cyanide restores N gene-mediated resistance to tobacco mosaic virus in transgenic tobacco expressing salicylic acid hydroxylase

AUTOR(ES)
RESUMO

Salicylhydroxamic acid (SHAM), an inhibitor of alternative oxidase (AOX), blocks salicylic acid-induced resistance to tobacco mosaic virus (TMV) but does not inhibit pathogenesis-related PR-1 protein synthesis or resistance to fungal and bacterial pathogens. We found that the synthetic resistance-inducing chemical 2, 6-dichloroisonicotinic acid also induced Aox transcript accumulation and SHAM-sensitive resistance to TMV. The respiratory inhibitors antimycin A and KCN also induced Aox transcript accumulation and resistance to TMV but did not induce PR-1 accumulation. Tobacco plants of the TMV-resistant cultivar Samsun NN transformed with the salicylic acid hydroxylase (nahG) gene could no longer restrict virus to the inoculation site, resulting in spreading necrosis instead of discrete necrotic lesions. Treatment with KCN restored TMV localization and normal lesion morphology. SHAM antagonized this effect, allowing virus escape and spreading necrosis to resume. The results demonstrate the importance of the SHAM-sensitive (potentially AOX-dependent) signal transduction pathway in mediating virus localization early in the hypersensitive response.

Documentos Relacionados