Cure of Trypanosoma brucei brucei and Trypanosoma brucei rhodesiense infections in mice with an irreversible inhibitor of S-adenosylmethionine decarboxylase.

AUTOR(ES)
RESUMO

A structural analog, 5'-([(Z)-4-amino-2-butenyl]methylamino)-5'-deoxy adenosine (MDL 73811), of decarboxy S-adenosyl-L-methionine, the product of the reaction catalyzed by S-adenosyl-L-methionine (AdoMet) decarboxylase (DC), was found to inhibit Trypanosoma brucei brucei AdoMet DC. The inhibition was time dependent (tau 50, 0.3 min), exhibited pseudo-first-order kinetics (Ki, 1.5 microM), and was apparently irreversible. The natural substrate of the reaction, AdoMet, protected the enzyme from inactivation, suggesting that MDL 73811 was directed at the enzyme active site and was probably catalytically activated. Administration of MDL 73811 to T. b. brucei-infected rats resulted in rapid inhibition of AdoMet DC activity, a decrease in spermidine, and an increase in putrescine in the trypanosomes isolated from treated rats. Treatment of T. b. brucei-infected mice with MDL 73811 (20 mg/kg of body weight intraperitoneally twice daily for 4 days) resulted in cures of the trypanosome infections. Additionally, drug-resistant T. brucei rhodesiense infections in mice were cured by either a combination of MDL 73811 (50 mg/kg intraperitoneally three times per day for 5 days) and relatively low oral doses of alpha-difluoromethylornithine or MDL 73811 (50 mg/kg per day for 7 days) administered alone in implanted miniosmotic pumps. These data suggest that MDL 73811 and, perhaps, other inhibitors of AdoMet DC have potential for therapeutic use in various forms of African trypanosomiasis.

Documentos Relacionados