Cse1l Is Essential for Early Embryonic Growth and Development

AUTOR(ES)
FONTE

American Society for Microbiology

RESUMO

The CSE1L gene, the human homologue of the yeast chromosome segregation gene CSE1, is a nuclear transport factor that plays a role in proliferation as well as in apoptosis. CSE1 and CSE1L are essential genes in Saccharomyces cerevisiae and mammalian cells, as shown by conditional yeast mutants and mammalian cell culture experiments with antisense-mediated depletion of CSE1L. To analyze whether CSE1L is also essential in vivo and whether its absence can be compensated for by other genes or mechanisms, we have cloned the murine CSE1L gene (Cse1l) and analyzed its tissue- and development-specific expression: Cse1l was detected at embryonic day 7.0 (E7.0), E11.0, E15.0, and E17.0, and in adults, high expression was observed in proliferating tissues. Subsequently, we inactivated the Cse1l gene in embryonic stem cells to generate heterozygous and homozygous knockout mice. Mice heterozygous for Cse1l appear normal and are fertile. However, no homozygous pups were born after interbreeding of heterozygous mice. In 30 heterozygote interbreeding experiments, 50 Cse1l wild-type mice and 100 heterozygotes were born but no animal with both Cse1l alleles deleted was born. Embryo analyses showed that homozygous mutant embryos were already disorganized and degenerated by E5.5. This implicates with high significance (P < 0.0001, Pearson chi-square test) an embryonically lethal phenotype of homozygous murine CSE1 deficiency and suggests that Cse1l plays a critical role in early embryonic development.

Documentos Relacionados