Crescimento e propriedades vibracionais de cristais a base de Ãxidos / Growth and Vibrational Properties of Oxide Crystals

AUTOR(ES)
FONTE

IBICT - Instituto Brasileiro de Informação em Ciência e Tecnologia

DATA DE PUBLICAÇÃO

16/03/2012

RESUMO

In this work we used different experimental techniques to study four different series of inorganic oxide crystals, namely: (i) congruent lithium isotope niobate (C7LN), (ii) rare-earth doped mixed vanadates ((Nd,Yb):YxGd1-x(VO4)); (iii) alkali metal doped and pure calcium barium niobates (CaxBa1-xNb2O6); and (iv) potassium tantalite niobate (KTa1-xNbxO3). Below we describe the studies performed for each class. (i) For further investigation on the defect structure of lithium niobate crystals (LiNbO3 â hereafter LN) using the neutron scattering technique, a congruent lithium isotope niobate crystal (C7LN) was grown by the Czochralski method from a 48.4% 7Li melt. The X-ray powder diffraction (XRPD) results show that the as-grown crystal is a single-phased (R3c) LN. We observed 4A1(TO)+7E(TO) Raman modes. The crystal composition (Li mol%) determined from UV absorption edge and Raman measurements is 47.47% and 47.34%, respectively. The specific heat (Cp), thermal diffusion coefficients (λa , λc), thermal conductivities (κa , κc) and the average thermal expansion coefficients (a , c) were determined. The effect of Li vacancy content is analyzed by comparing the results with those obtained for near stoichiometric lithium isotope niobate (NS7LN) and congruent natural lithium niobate (CLN) crystals. The values of all thermal parameters of C7LN are smaller than those of NS7LN and CLN, which may be related to either the difference of vacancy content or isotope substitution. (ii) The room temperature phonon modes of the isostructural (Nd,Yb):YxGd1-x(VO4) laser crystals were determined using the Raman scattering technique, and the observed wavenumbers follow the overall mode distribution expected for REVO4 (RE = rare earth) compounds with the tetragonal zircon structure, . They were assigned according to the group theory in terms of the internal modes of the VO4 tetrahedron and the external modes of the YxGd1-x(VO4) lattice. No appreciable changes in the phonon wavenumbers were observed for Yb:GdVO4 (Yb = 0.008, 0.015, 0.020, 0.025, and 0.035), indicating that the force fields in the GdVO4 lattice are not strongly altered by Yb doping at the Gd site. However, most of the phonon wavenumbers in the systems (Nd,Yb):YxGd1-x(VO4) shifts upwards (one-phonon-like behavior) when Y replaces Gd. (iii) The room temperature phonon modes of both the alkali metal doped and pure CaxBa1-xNb2O6 (hereafter CBNx) crystals were determined using the Raman scattering technique. Owing to the intrinsic disorder of the tetragonal lattice we observed few and broad bands. The wavenumber of the internal modes observed shifts upwards when the volume of the unit cell increases. This blue shift is likely to be related to the shortening of the Nb-O band length of the NbO6 octahedrons. The Curie temperatures of the ferroelectric to paraelectric phase transition for all the CBN-like crystals were obtained from DSC measurements. The Raman spectra of CBN32 in the temperature range from 300 to 568 K were recorded in order to investigate and verify the ferroelectric phase transformation. The lower-temperature (25-260 K) dependent Raman spectra of CBN32 were also recorded, and the results show that it may exhibit a phase transition at 75-100 K. (iv) Single crystals of potassium tantalite niobate, KTa1-xNbxO3 (KTNx, x = 0.45, 0.50, and 0.55), were synthesized by the top-seeded solution growth method. The Raman scattering technique is used to investigate the sequence of phase transitions undergone by KTNx crystals. Special attention is given to the changes which characterize the orthorhombic-to-rhombohedral phase transition.

ASSUNTO(S)

fisica da materia condensada espectroscopia raman cristais nÃo-lineares medidas tÃrmicas transiÃÃes de fase raman scpetroscopy thermal properties crystals phase transition

Documentos Relacionados