Coupled maps and applications: image processing, self-organization and symbolic programming. / Mapas acoplados e aplicações: processamento de imagens, auto-organização e processamento simbólico.

AUTOR(ES)
DATA DE PUBLICAÇÃO

2004

RESUMO

We investigated some computational abilities of systems composed by coupled maps. Here, we explored the use of those systems in dealing with three problems: the identification of reflection symmetry in bidimensional images; the appearing of clusters of synchronous elements in networks with small-worlds topologies; and in constructing figures obeying a composition rule. For the symmetry identification problem, we were motivated by biological models to built a network of coupled maps, with local and global couplings, that verify reflection symmetry of plane images through the synchronism of the elements from the system. In matter, this system presents the ability to perform a new identification without re-initializing the system. This feature allows the identification of symmetries in scenes that can change during the time. In general extended coupled map systems have all elements connected, or the connections lying over a uniform lattice. The dynamics of these systems can present the formation of clusters with synchronous elements. Such auto-organization behavior can be found in several actual complex systems. However, more commonly, these systems do not exhibit uniform connections among their elements. Here, we investigated the capacity of coupled map systems, in different topologies of small-worlds, exhibiting the formation of clusters with synchronous elements, by using a number of connections close to the number in regular lattices but with a significant reduction of the mean distance among their elements. Last we considered the use of systems of maps as programmable systems. Usually, for formation of patterns and geometric figures in the plan, iterated function systems work with a fixed set of linear contractions in the plan. Here, we showed that is possible to use more general maps to the production of patterns and geometric figures, and biological patterns and fractals are generated. Shift functions are used to change the dynamics of the map system due to either the context or the state, giving a way of programming the system.

ASSUNTO(S)

processamento de imagens computabilidade sistemas dinâmicos synchronism neural networks complexity image processing auto-organização mapas acoplados redes neurais coupled maps sincronismo self-organization complexidade dynamic systems computability

Documentos Relacionados