Coreografias no problema de N corpos / Choreographies in the N-body problem

AUTOR(ES)
FONTE

IBICT - Instituto Brasileiro de Informação em Ciência e Tecnologia

DATA DE PUBLICAÇÃO

03/03/2011

RESUMO

O objetivo deste trabalho é a obtenção numérica de soluções periódicas para o problema geral de N corpos sujeitos apenas à atração gravitacional mútua. Em particular, procuramos soluções chamadas de coreografias, que apresentam em comum a propriedade de que todos os corpos se movem sobre a mesma curva. O interesse neste tipo de solução aumentou muito recentemente devido aos avanços na Física das ondas gravitacionais. Com a possível detecção de ondas gravitacionais prevista para um futuro próximo, todas as configurações periódicas do problema de N corpos passam a ser consideradas como possíveis fontes de radiação gravitacional. Identificar os padrões de radiação associados a estas órbitas é uma das tarefas prementes atualmente na área. Tendo isso em vista, iremos calcular também as ondas gravitacionais emitidas por um sistema em que os corpos que o constituem seguem uma órbita coreográfica. Começamos este trabalho com um capítulo que descreve historicamente a busca pela solução geral do problema de N corpos, inicialmente motivada pelo interesse na análise da estabilidade do Sistema Solar. Em seguida, no Capítulo 2, apresentamos as principais definições e teoremas que serão utilizados ao longo do texto. O leitor pode escolher entre seguir este capítulo no início de sua leitura, ou então utilizá-lo para consulta quando necessário. No Capítulo 3, identificamos os graus de liberdade do sistema formado pelos N corpos e determinamos quais grandezas físicas nele se conservam, através do Teorema de Noether. Com isso estabelecemos a não integrabilidade deste sistema, no sentido de Liouville, para N >2. Escrevemos também a solução geral do problema de dois corpos, conhecido como problema de Kepler, e mostramos duas soluções particulares para o problema de três corpos com massas iguais, conhecidas como soluções de Euler (1765) e Lagrange (1772). Na solução de Euler, os três corpos estão dispostos sobre uma mesma reta que gira com velocidade angular constante ao redor do seu centro de massa, e na de Lagrange, estão dispostos sobre os vértices de um triângulo equilátero que gira com velocidade angular constante ao redor do seu centro de massa. Com o intuito de descrever as soluções periódicas conhecidas para o Problema de N Corpos, no Capítulo 4 estudaremos as órbitas homográficas, que apresentam a característica de que a configuração do sistema em qualquer instante pode ser obtida através de uma rotação composta com uma dilatação/contração da configuração inicial. Essas soluções generalizam as soluções de Euler e Lagrange citadas anteriormente. No Capítulo 5, analisaremos as órbitas coreográficas. Esta classe de soluções foi descoberta por Cris Moore em 1993, que encontrou numericamente uma solução coreográfica para o problema de três corpos em que eles seguem uma mesma curva em forma de oito. A existência e a estabilidade desta solução foram estudadas de maneira rigorosa por Richard Montgomery e Alain Chenciner. Neste trabalho, damos um esboço de como construir a solução em forma de oito no caso em que as massas são idênticas. Simularemos esta e outras órbitas coreográficas, além de algumas outras órbitas periódicas descritas anteriormente, através do método de integração de Runge-Kutta de quarta ordem. Finalmente, no Capítulo 6 calculamos as ondas gravitacionais emitidas pelas órbitas homográficas e coreográficas simuladas anteriormente. Finalizaremos com uma breve discussão comparando os padrões de ondas gravitacionais obtidos para as diferentes órbitas e analisando a possibilidade de determinar a fonte de emissão a partir da medida de um sinal de uma onda gravitacional.

ASSUNTO(S)

física matemática gravidade gravity mayhematical physics mecânica clássica classical mechanics dynamical systems (mathematical physics) sistemas dinâmicos (física matemática)

Documentos Relacionados