Conversion of G-protein specificity of insulin-like growth factor II/mannose 6-phosphate receptor by exchanging of a short region with beta-adrenergic receptor.

AUTOR(ES)
RESUMO

The 14-residue peptide (peptide 14) corresponding to Arg2410-Lys2423 of the insulin-like growth factor II receptor (IGF-IIR) can activate the adenylate cyclase-inhibitor guanine nucleotide-binding protein Gi, and the 15-residue beta III-2 peptide Arg259-Lys273 of the beta 2-adrenergic receptor (beta 2AR) can activate the stimulatory protein Gs. In phospholipid vesicles, IGF-IIR and beta 2AR activate Gi and Gs in response to IGF-II and isoproterenol, respectively. We constructed a chimeric IGF-II receptor (beta III-2/IGF-IIR) by converting its native peptide 14 sequence to the beta III-2 sequence. In cells expressing beta III-2/IGF-IIR, membrane adenylate cyclase activity markedly increased without IGF-II and was further promoted by IGF-II. This was verified by measuring chloramphenicol acetyltransferase (CAT) activity in beta III-2/IGF-IIR cells with cotransfection of a cAMP response element-CAT construct. This study shows not only the conversion of G-protein specificity of a receptor from Gi to Gs but also the simulation of G protein-coupled receptor signals by using a short receptor region and intact cells. These findings indicate that the G protein-activation signals are interchangeable, self-determined structural motifs that function in the setting of either a single-spanning or multiple-spanning receptor.

Documentos Relacionados