Contribuições teoricas para o estudo de funções de distribuição correlacionadas em um canal sem fio / Theoretical contributions to the study of correlated distributions funcions of wireless channels

AUTOR(ES)
DATA DE PUBLICAÇÃO

2009

RESUMO

In wireless communications, the multipath fading is modeled by several distributions including Hoyt, Rayleigh, Weibull, Nakagami-m, and Rice. In this thesis, new, exact expressions for the bivariate Hoyt (Nakagami-q) processes with arbitrary correlation in a nonstationary environment are derived. More specifically, the following are obtained: joint probability density function, joint cumulative distribution function, power correlation coefficient, and some statistics related to the signal-tonoise ratio at the output of the selection combiner, namely, outage probability and probability density function. The expressions make use of the well known generalized Laguerre polynomials. They are mathematically tractable and flexible enough to accommodate a myriad of correlation scenarios, useful in the analysis of a more general fading environment. After this, capitalizing on result previously deduced, exact expressions concerning the bivariate Nakagami-mprocesses with arbitrary correlation and fading parameters are derived. More specifically, the following are obtained in the present work: joint moment generating function; joint probability density function; joint cumulative distribution function; power correlation coefficient; and several statistics related to the signal-to-noise ratio at the output of the selection combiner, namely, outage probability, probability density function, and mean SNR. More recently, the ®-µ fading model has been proposed that accounts for the non-linearity of the propagation medium as well as for the multipath clustering of the radio waves. The ®-µ distribution is general, flexible, and mathematically easily tractable. It includes important distributions such as Gamma (and its discrete versions Erlang and Central Chi-Squared), Nakagami-m (and its discrete version Chi), Exponential, Weibull, One-Side Gaussian, and Rayleigh. An infinite series formulation for the multivariate ®-µ joint probability density function with arbitrary correlation matrix and non-identically distributed variates is derived. The expression is exact and general and includes all of the results previously published in the literature concerning the distributions comprised by the ®-µ distribution. The general expression is then particularized to an indeed very simple, approximate closed-form solution. In addition, a multivariate joint cumulative distribution function is obtained, again in simple, closed-form manner. Approximate and exact results are very close to each other for small as well medium values of correlation. We maintain, however, that a relation among the correlation coefficients of the corresponding Gaussian components must be kept so that convergence is attained

ASSUNTO(S)

fading diversity radio - transmissores e transmissão - desenvolvimento correlation sistema de computação sem fio correlação (estatistica) nakagami comunicações digitais variaveis aleatorias probability density functions

Documentos Relacionados