Constant pressure and temperature molecular dynamics simulation of a fully hydrated liquid crystal phase dipalmitoylphosphatidylcholine bilayer.

AUTOR(ES)
RESUMO

We report a constant pressure and temperature molecular dynamics simulation of a fully hydrated liquid crystal (L alpha) phase bilayer of dipalmitoylphosphatidylcholine at 50 degrees C and 28 water molecules/lipid. We have shown that the bilayer is stable throughout the 1550-ps simulation and have demonstrated convergence of the system dimensions. Several important aspects of the bilayer structure have been investigated and compared favorably with experimental results. For example, the average positions of specific carbon atoms along the bilayer normal agree well with neutron diffraction data, and the electron density profile is in accord with x-ray diffraction results. The hydrocarbon chain deuterium order parameters agree reasonably well with NMR results for the middles of the chains, but the simulation predicts too much order at the chain ends. In spite of the deviations in the order parameters, the hydrocarbon chain packing density appears to be essentially correct, inasmuch as the area/lipid and bilayer thickness are in agreement with the most refined experimental estimates. The deuterium order parameters for the glycerol and choline groups, as well as the phosphorus chemical shift anisotropy, are in qualitative agreement with those extracted from NMR measurements.

Documentos Relacionados