Conjugal Strategy for Construction of Fast Acid-Producing, Bacteriophage-Resistant Lactic Streptococci for Use in Dairy Fermentations

AUTOR(ES)
RESUMO

Bacteriophage-resistant dairy streptococci were obtained following conjugal transfer of pTR2030 from a lactose-negative donor, Streptococcus lactis TEK12, to lactose-positive recipient strains, Streptococcus cremoris LMA13 and 924 and S. lactis LMA12. Fast acid-producing, phage-resistant transconjugants were selected by challenge with homologous phage on fast-slow differential agar or lactose indicator agar. Acquisition of pTR2030 by the transconjugants was confirmed by DNA-DNA hybridization. Resistance of transconjugants to homologous phage was complete. Curing or deletion of pTR2030 in the transconjugants confirmed that phage resistance was due to pTR2030 acquisition and not to coincident background mutation. Phage-sensitive pTR2030 deletion derivatives of LMA12 transconjugants were isolated in vivo. The HindIII fragment B of pTR2030 was subcloned into pBR322 to yield a recombinant plasmid, pMET2, useful as a source of pTR2030 DNA. A specific, chemically synthesized oligomer useful as a pTR2030 probe was derived from the sequence of a small portion of pTR2030. The conjugal strategy presented here was effective in yielding fast acid-producing, phage-resistant S. cremoris and S. lactis strains without the use of antibiotic resistance markers and without interfering with the acid-producing ability of the recipient strain.

Documentos Relacionados