Concentration of viruses and dissolved DNA from aquatic environments by vortex flow filtration.

AUTOR(ES)
RESUMO

Vortex flow filtration (VFF) was used to concentrate viruses and dissolved DNA from freshwater and seawater samples taken in Florida, the Gulf of Mexico, and the Bahamas Bank. Recoveries of T2 phage and calf thymus DNA added to artificial seawater and concentrated by VFF were 72.8 and 80%, respectively. Virus concentrations determined by transmission electron microscopy of VFF-concentrated samples ranged from 3.4 x 10(7)/ml for a eutrophic Tampa Bay sample to 2.4 x 10(5) for an oligotrophic oceanic surface sample from the southeastern Gulf of Mexico. Viruslike particles were also observed in a sample taken from a depth of 1,500 m in the subtropical North Atlantic Ocean. Filtration of samples through Nuclepore or Durapore filters (pore size, 0.2 micron) prior to VFF reduced phage counts by an average of two-thirds. Measurement of dissolved-DNA content by Hoechst 33258 fluorescence in environmental samples concentrated by VFF yielded values only ca. 35% of those obtained for samples concentrated by ethanol precipitation (the standard dissolved-DNA method). However, ethanol precipitation of VFF-concentrated extracts resulted in an increase in measurable DNA, reaching 80% of the value obtained by the standard method. These results indicate that a portion of the naturally occurring dissolved DNA is in a form inaccessible to nucleases and Hoechst stain, perhaps bound to protein or other polymeric material, and is released upon ethanol precipitation. Viral DNA contents estimated from viral counts averaged only 3.7% (range, 0.9 to 12.3%) of the total dissolved DNA for samples from freshwater, estuarine, and offshore oligotrophic environments.(ABSTRACT TRUNCATED AT 250 WORDS)

Documentos Relacionados