COMPUTATIONAL METHODS FOR GEOLOGICAL SECTIONS RESTAURATION. / PROCEDIMENTOS COMPUTACIONAIS PARA O BALANCEAMENTO DE SEÇÕES GEOLÓGICAS

AUTOR(ES)
DATA DE PUBLICAÇÃO

2002

RESUMO

This work presents a new approach for the restoration of geological cross-sections that is based on physical modeling and numerical simulation. The main purpose is to introduce Continuum Mechanics concepts into the geological restoration process in order to consider physical properties of the materials during the simulation of the movement of a rock block along a fault. The adopted strategy uses a dynamic relaxation algorithm to solve the equation system that arises from the numerical simulation based on the Finite Element Method, together with some specific boundary conditions to represent the movement of the rock block over the fault.As development environment, a cross-section restoration system was adopted, composed by a group of usual geometric transformations from the classical approach of the problem. This system adopts a geometric modeling technology based on a data structure that is capable of completely representing the topology of a planar subdivision. The proposed numerical simulation is implemented inside this system and integrates with three different modules: a pre-processing module, where the required input data can be easily generated; an analysis module, in which the dynamic relaxation method has been implemented; and a post- processing module, where the results of the numerical simulation can be viewed. The palinspatic nature of the restoration problem is taken into account by means of a user-friendly graphics interface that was specifically designed for the system. The graphics interface and the geological attribute classes were completely re-organized with two purposes. First, to implement a graphical interface based on a decision tree to manage user tasks involved in the restoration process, which includes trial- and-error steps. Second, to provide support for the implementation of numerical simulation in the restoration process.The ideas proposed herein can be considered as a first step towards a complete geological cross-section restoration system in which more consistent deformation measures can be incorporated into the governing equations to better represent the mechanical behavior of the rocks, and is also an expansion of the presented system to a three-dimensional environment, currently under investigation.

ASSUNTO(S)

modelagem geometrica finite elements geological sections restaurations geometric modeling elementos finitos balanceamento de secoes geologicas

Documentos Relacionados