Comportamento de vortices em cupratos supercondutores e transição tipo supercondutor-isolante em grafite

AUTOR(ES)
DATA DE PUBLICAÇÃO

2002

RESUMO

In this thesis we have studied dynamics and pinning properties of the vortex matter in high temperature superconductors. It is found that the second magnetization peak (SMP) effect, an increase in the magnetization hysteresis loop width in Bi2212 single crystals vanishes with decreasing the crystal size. We showed that this effect is not related to the critical current enhancement but can be well explained within a framework of the thermomagnetic instability theory, where the avalanche-like motion of the vortices causes a local increase of the temperature, that if not dissipated, results in a decrease of the irreversible magnetization. Through non-local in-plane resistance measurements we have concluded on vortex-vortex correlations above the first order transition (FOT) boundary. We identified the FOT with a decoupling transition of the flux line lattice from the atomic lattice, that is the transition from a relatively disordered vortex state to a more ordered vortex lattice state. Our results suggest also that the melting transition of the flux line lattice can occur well above the first order transition boundary. Basal plane resistance Ra ( H, T) and magnetization M ( H, T) measurements performed on graphite provide evidence for superconductivity instability occurring in this material. In particular, we have found a magnetic-field-induced transition from metallic- to semiconductor-type resistance behavior. The analysis of the data using a scaling theory revealed a striking similarity between this transition and that measured in thin-film superconductors and other 2D systems. However, in contrast to those materials, the transition in graphite is observable at almost two orders of magnitude higher temperatures

ASSUNTO(S)

dinamica de vortices supercondutividade de alta temperatura transições de fase supercondutores grafita

Documentos Relacionados