Comparison of tensile strength of different carbon fabric reinforced epoxy composites

AUTOR(ES)
FONTE

Materials Research

DATA DE PUBLICAÇÃO

2006-03

RESUMO

Carbon fabric/epoxy composites are materials used in aeronautical industry to manufacture several components as flaps, aileron, landing-gear doors and others. To evaluate these materials become important to know their mechanical properties, for example, the tensile strength. Tensile tests are usually performed in aeronautical industry to determinate tensile property data for material specifications, quality assurance and structural analysis. For this work, it was manufactured four different laminate families (F155/PW, F155/HS, F584/PW and F584/HS) using pre-impregnated materials (prepregs) based on F155TM and F584TM epoxy resins reinforced with carbon fiber fabric styles Plain Weave (PW) and Eight Harness Satin (8HS). The matrix F155TM code is an epoxy resin type DGEBA (diglycidil ether of bisphenol A) that contains a curing agent and the F584TM code is a modified epoxy resin type. The laminates were obtained by handing lay-up process following an appropriate curing cycle in autoclave. The samples were evaluated by tensile tests according to the ASTM D3039. The F584/PW laminates presented the highest values of tensile strength. However, the highest modulus results were determined for the 8HS composite laminates. The correlation of these results emphasizes the importance of the adequate combination of the polymeric matrix and the reinforcement arrangement in the structural composite manufacture. The microscopic analyses of the tested specimens show valid failure modes for composites used in aeronautical industry.

Documentos Relacionados