Comparison of algorithms used in the construction of genetic linkage maps / Comparação de algoritmos usados na construção de mapas genéticos

AUTOR(ES)
DATA DE PUBLICAÇÃO

2008

RESUMO

Genetic linkage maps are linear arrangements showing the order and distance between loci in chromosomes of a particular species. Recently, the availability of molecular markers has made such maps more saturated and efficient methods are needed for their construction. One of the steps that deserves more attention in the construction of genetic linkage maps is the ordering of genetic markers within each linkage group. This ordering is considered a special case of the classic traveling salesman problem (TSP), which consists in choosing the best order among all possible ones. However, the strategy of exhaustive search becomes unfeasible when the number of markers is large. One possible alternative to construct such maps is to use algorithms that provide approximate solutions. Thus, the aim of this work was to evaluate the efficiency of algorithms Try (TRY), Seriation (SER), Rapid Chain Delineation (RCD), Recombination Counting and Ordering (RECORD) and Unidirectional Growth (UG), as well as the criteria PARF (product of adjacent recombination fractions), SARF (sum of adjacent recombination fractions), SALOD (sum of adjacent lod scores) and LMHC (likelihood via hidden Markov chains), used with the RIPPLE algorithm for error verification, in the construction of genetic linkage maps. For doing so, a linkage map of a hypothetical diploid and monoecious plant species was simulated, containing 21 markers with fixed distance of 3 centimorgans between them. Using Monte Carlo methods, 550 F2 populations were randomly simulated with 100 and 400 individuals, together with different combinations of dominant and codominant markers. 10 % and 20 % of missing data was also included. Results showed that the algorithms TRY and SER gave good results in all situations, even with presence of a large number of missing data and dominant markers linked in repulsion phase. Thus, these can be recommended for analyzing real data. The algorithms RECORD and UG gave good results in the absence of dominant markers linked in repulsion phase and can be used in this case. Among all algorithms, RCD was the least efficient. The criterion LHMC, applied with the RIPPLE algorithm, showed the best results when the goal is to check ordering errors.

ASSUNTO(S)

marcador molecular. mapeamento genético molecular marker. monte carlo hidden markov chain algoritmos multipoint estimates cadeias de markov

Documentos Relacionados