Collagen triple-helix formation in all-trans chains proceeds by a nucleation/growth mechanism with a purely entropic barrier

AUTOR(ES)
FONTE

National Academy of Sciences

RESUMO

Collagen consists of repetitive Gly–Xaa–Yaa tripeptide units with proline and hydroxyproline frequently found in the Xaa and Yaa position, respectively. This sequence motif allows the formation of a highly regular triple helix that is stabilized by steric (entropic) restrictions in the constituent polyproline-II-helices and backbone hydrogen bonds between the three strands. Concentration-dependent association reactions and slow prolyl isomerization steps have been identified as major rate-limiting processes during collagen folding. To gain information on the dynamics of triple-helix formation in the absence of these slow reactions, we performed stopped-flow double-jump experiments on cross-linked fragments derived from human type III collagen. This technique allowed us to measure concentration-independent folding kinetics starting from unfolded chains with all peptide bonds in the trans conformation. The results show that triple-helix formation occurs with a rate constant of 113 ± 20 s–1 at 3.7°C and is virtually independent of temperature, indicating a purely entropic barrier. Comparison of the effect of guanidinium chloride on folding kinetics and stability reveals that the rate-limiting step is represented by bringing 10 consecutive tripeptide units (3.3 per strand) into a triple-helical conformation. The following addition of tripeptide units occurs on a much faster time scale and cannot be observed experimentally. These results support an entropy-controlled zipper-like nucleation/growth mechanism for collagen triple-helix formation.

Documentos Relacionados