Cloning and expression of a cAMP-activated Na+/H+ exchanger: evidence that the cytoplasmic domain mediates hormonal regulation.

AUTOR(ES)
RESUMO

The ubiquitous plasma membrane Na+/H+ exchanger (termed NHE1) is activated by diverse hormonal signals, with the notable exception of hormones acting through cAMP as second messenger. Therefore, the Na+/H+ exchanger found in the nucleated trout red cell is of particular interest since it is activated by catecholamines, forskolin, and cAMP analogues. We report here that a cloned cDNA encoding the red cell exchanger restores functional Na+/H+ activity when transfected into Na+/H+ antiporter-deficient fibroblasts (i.e., it regulates intracellular pH in a Na-dependent and amiloride-sensitive manner). This red cell exchanger represents an additional form of Na+/H+ exchanger (termed beta NHE), which is characterized by a specific cytoplasmic domain involved in activation by the cAMP-dependent signaling pathway. After transfection in the same cellular context, beta NHE, but not NHE1, is activated by cAMP or by hormones that increase cAMP levels. Comparison of the amino acid sequences of exchangers shows that beta NHE, but not NHE1, contains two clustered consensus motifs for phosphorylation by a cAMP-dependent protein kinase (protein kinase A; PKA). A deletion mutant devoid of the C-terminal region of the cytoplasmic loop containing the two PKA sites restores Na+/H+ activity but is no longer activated by cAMP analogues or catecholamines. In red blood cells, the Na+/H+ exchanger is also activated by another pathway involving protein kinase C (PKC). Expression of beta NHE in fibroblasts shows that these two independent signaling pathways impinge on two distinct domains of the exchanger. The cytoplasmic segment containing PKA consensus sites, which is crucial for cAMP activation, is unnecessary for stimulation by PKC activators.

Documentos Relacionados