Cloning and characterization of a functionally distinct corticotropin-releasing factor receptor subtype from rat brain.

AUTOR(ES)
RESUMO

The present study reports the isolation of a cDNA clone that encodes a second member of the corticotropin-releasing factor (CRF) receptor family, designated as the CRF2 receptor. The cDNA was identified using oligonucleotides of degenerate sequence in a PCR paradigm. A PCR fragment obtained from rat brain was utilized to isolate a full-length cDNA from a rat hypothalamus cDNA library that encoded a 411-amino acid protein with approximately 70% identity to the known CRF1 receptor over the entire coding region. When expressed in mouse Ltk- cells, this receptor stimulates cAMP production in response to CRF and known CRF-like agonists. CRF and the nonmammalian CRF-related peptides sauvagine and urotensin I stimulate adenylate cyclase activity in a dose-dependent manner with a rank order of potency different from that of the CRF1 receptor: sauvagine > urotensin > or = rat/human CRF > ovine CRF. Tissue distribution analysis of the mRNAs by reverse transcriptase-PCR shows CRF2 receptor mRNA is present in rat brain and detectable in lung and heart. In situ hybridization studies indicate specific expression within the brain in the ventromedial nuclei of the hypothalamus, the lateral septum, the amygdala, and entorhinal cortex, but there is unremarkable expression in the pituitary. An additional splice variant of the CRF2 receptor with a different N-terminal domain has been identified by PCR, encoding a putative protein of 431 amino acids. Thus, the data demonstrate the presence of another functional CRF receptor, with significant differences in the pharmacological profile and tissue distribution from the CRF1 receptor, which would predict important functional differences between the two receptors.

Documentos Relacionados