Characterization of Benzoyl Coenzyme A Biosynthesis Genes in the Enterocin-Producing Bacterium “Streptomyces maritimus”

AUTOR(ES)
FONTE

American Society for Microbiology

RESUMO

The novel benzoyl coenzyme A (benzoyl-CoA) biosynthesis pathway in “Streptomyces maritimus” was investigated through a series of target-directed mutations. Genes involved in benzoyl-CoA formation were disrupted through single-crossover homologous recombination, and the resulting mutants were analyzed for their ability to biosynthesize the benzoyl-CoA-primed polyketide antibiotic enterocin. Inactivation of the unique phenylalanine ammonia-lyase-encoding gene encP was previously shown to be absolutely required for benzoyl-CoA formation in “S. maritimus”. The fatty acid β-oxidation-related genes encH, -I, and -J, on the other hand, are necessary but not required. In each case, the yield of benzoyl-CoA-primed enterocin dropped below wild-type levels. We attribute the reduced benzoyl-CoA formation in these specific mutants to functional substitution and cross-talk between the products of genes encH, -I, and -J and the enzyme homologues of primary metabolism. Disruption of the benzoate-CoA ligase encN gene did not perturb enterocin production, however, demonstrating that encN is extraneous and that benzoic acid is not a pathway intermediate. EncN rather serves as a substitute pathway for utilizing exogenous benzoic acid. These experiments provide further support that benzoyl-CoA is formed in a novel bacterial pathway that resembles the eukaryotic assembly of benzoyl-CoA from phenylalanine via a β-oxidative path.

Documentos Relacionados