Characterization of a plasmid-specified pathway for catabolism of isopropylbenzene in Pseudomonas putida RE204.

AUTOR(ES)
RESUMO

A Pseudomonas putida strain designated RE204, able to utilize isopropylbenzene as the sole carbon and energy source, was isolated. Tn5 transposon mutagenesis by means of the suicide transposon donor plasmid pLG221 yielded mutant derivatives defective in isopropylbenzene metabolism. These were characterized by the identification of the products which they accumulated when grown in the presence of isopropylbenzene and by the assay of enzyme activities in cell extracts. Based on the results obtained, the following metabolic pathway is proposed: isopropylbenzene----2,3-dihydro -2,3-dihydroxyisopropylbenzene----3-isopropylcatechol----2 -hydroxy-6-oxo-7-methylocta-2,4-dienoate----isobutyrate + 2-oxopent-4-enoate----amphibolic intermediates. Plasmid DNA was isolated from strain RE204 and mutant derivatives and characterized by restriction enzyme cleavage analysis. Isopropylbenzene-negative isolates carried a Tn5 insert within a 15-kilobase region of a 105-kilobase plasmid designated pRE4. DNA fragments of pRE4 carrying genes encoding isopropylbenzene catabolic enzymes were cloned in Escherichia coli with various plasmid vectors; clones were identified by (i) selection for Tn5-encoded kanamycin resistance in the case of Tn5 mutant plasmids, (ii) screening for isopropylbenzene dioxygenase-catalyzed oxidation of indole to indigo, and (iii) use of a Tn5-carrying restriction fragment, derived from a pRE4::Tn5 mutant plasmid, as a probe for clones carrying wild-type restriction fragments. These clones were subsequently used to generate a transposon insertion and restriction enzyme cleavage map of the isopropylbenzene metabolic region of pRE4.

Documentos Relacionados