Cell envelope alterations in antibiotic-sensitive and-resistant strains of Neisseria gonorrhoeae.

AUTOR(ES)
RESUMO

The cell envelopes of antibiotic-resistant and -sensitive isogenic strains of Neisseria gonorrhoeae were analyzed to determine whether acquisition of genetic loci for altered antibiotic sensitivity was accompanied by alterations in cell envelope composition. No differences in the composition of phospholipids and lipopolysaccharides were noted. Acquisition of mtr-2, which results in low-level, nonspecific increased resistance to multiple antibiotics, dyes, and detergents, was accompanied by a sevenfold increase in the amount of a minor, 52,000-molecular-weight outer membrane protein and a 32% increase in the extent of peptidoglycan cross-linking. Subsequent addition of the nonspecific hypersensitivity loci env-1 or env-2 to a strain carrying mtr-2 resulted in reversal of the phenotypic resistance determined by mtr-2 and marked reduction in both the amount of the 52,000-molecular-weight outer membrane protein and the extent of peptidoglycan cross-linking. Introduction of penB2, which results in a fourfold increase in resistance to penicillin and tetracycline, was accompanied by the disappearance of the principal outer membrane protein of the wild-type strain (molecular weight, 36,900) and the appearance of a new species of the principal outer membrane protein (molecular weight, 39,400) in the transformant.

Documentos Relacionados