Cefalostato virtual-posicionamento inicial para a padronização na marcação de pontos craniométricos em imagens obtidas por tomografia computadorizada, para uso em cefalometria / The Virtual Cephalostat - the preliminar adjustment for standardization of skull orientation in landmarks localization using CT in cephalometric analyses

AUTOR(ES)
DATA DE PUBLICAÇÃO

2009

RESUMO

Objective: The development of new technology in dental diagnosis by cone beam CT (CBCT) image, made possible and accessible the realization of cephalometric evaluation through volumetric reconstructions of the skull. Scientific parameters with evidence-based are needed to implement its use. Some parameters used in conventional cephalometry (2D) maybe need to be forgotten, others should be adapted, and others still to be created. In this research we propose to create a Virtual Cephalostat orientation of the skull in CT, with the intracranial landmarks, because they are more stable. We propose the creation of landmark TS (Tubercle Sella) and the TS-Pg line to replace the landmark S (Sella) and the Y-axis of growth (Downs), respectively. Furthermore, we propose to use the Basion-Opistion line as a reference for cases of craniofacial asymmetry where is not possible to use the Frankfurt horizontal plane, as in some cases of syndromes that affects the most external landmarks. Methods: 49 skulls of Anatomy Museum of UNIFESP Federal University of São Paulo, were scanned in a CBCT. The analyses were performed in 2 stages, within 1-week space. Statistics measurements were calculated (mean, quartiles, minimum, maximum and standard deviation). We also calculated the intraclass correlations (ICC) and the Pearson correlations between the Y axis (S-Gn) and the line between landmarks TS-Pg. Results: Even if there is a low reproducibility in the coordinates for landmarks EC (Ethmoidal Crest), Pg and Gn it was observed a high correlation between the angular measures in question. To describe the inclination of the Y axis according to the slope of the line adopted TS and Pg a simple linear regression model is used, showed by the equation bellow: Ang Sö- Gn = 0,989 Ang TS Pgi i Conclusions: The use of the Virtual Cephalostat in orientation of skulls using CBCT is feasible and facilitates the reproduction of the skull position, despite the low intra observer reproducibility of landmarks EC, Pg and Gn, new 3D criteria in the definition of these landmarks could increase the precision in its location. The high intra observer reproducibility at the landmarks Op, N and TS, suggests that the anatomical criteria themselves promote their reliability; The TS landmark showed a higher reproducibility than the S landmark, even though the difference was not statistically significant, and it should be replaced by the landmark TS in future studies. There is a high correlation between the TS - Pg line and Y-axis. The relationship between the slope of the HF plane and Ba -Op line suggests that in the presence of the alteration of morphology in craniofacial structure, this relationship offer help in the diagnosis of craniofacial changes.

ASSUNTO(S)

tridimensional (3d) cephalometry craniofacial assimetria cone beam computed tomography (cbct) cephalograms computed tomography (ct) cefalogramas cefalometria tomografia computadorizada por feixe cônico ortodontia tomografia computadorizada three-dimensional (3d) asymmetry craniofacial orthodontic

Documentos Relacionados