Cdp1, a Novel Saccharomyces Cerevisiae Gene Required for Proper Nuclear Division and Chromosome Segregation

AUTOR(ES)
RESUMO

To identify new gene products involved in chromosome segregation, we isolated Saccharomyces cerevisiae mutants that require centromere binding factor I (Cbf1p) for viability. One Cbf1p-dependent mutant (denoted cdp1-1) was selected for further analysis. The CDP1 gene encodes a novel 125-kD protein that is notably similar to previously identified mouse, human and Caenorhabditis elegans proteins. CDP1Δ and cdp1-1 mutant cells were temperature sensitive for growth. At the permissive temperature, cdp1-1 and cdp1Δ cells lost chromosomes at a frequencies ~20-fold and ~110-fold higher than wild-type cells, respectively. These mutants also displayed unusually long and numerous bundles of cytoplasmic microtubules as revealed by immunofluorescent staining. In addition, we occasionally observed improperly oriented mitotic spindles, residing entirely within one of the cells. Presumably as a result of undergoing nuclear division with improperly oriented spindles, a large percentage of cdp1 cells had accumulated multiple nuclei. While cdp1 mutant cells were hypersensitive to the microtubule-disrupting compound thiabendazole, they showed increased resistance to the closely related compound benomyl relative to wild-type cells. Taken together, these results suggest that Cdp1p plays a role in governing tubulin dynamics within the cell and may interact directly with microtubules or tubulin.

Documentos Relacionados