CD4+ T Cells Induced by a DNA Vaccine: Immunological Consequences of Epitope-Specific Lysosomal Targeting†

AUTOR(ES)
FONTE

American Society for Microbiology

RESUMO

Our previous studies have shown that targeting DNA vaccine-encoded major histocompatibility complex class I epitopes to the proteasome enhanced CD8+ T-cell induction and protection against lymphocytic choriomeningitis virus (LCMV) challenge. Here, we expand these studies to evaluate CD4+ T-cell responses induced by DNA immunization and describe a system for targeting proteins and minigenes to lysosomes. Full-length proteins can be targeted to the lysosomal compartment by covalent attachment to the 20-amino-acid C-terminal tail of lysosomal integral membrane protein-II (LIMP-II). Using minigenes encoding defined T-helper epitopes from lymphocytic choriomeningitis virus, we show that the CD4+ T-cell response induced by the NP309–328 epitope of LCMV was greatly enhanced by addition of the LIMP-II tail. However, the immunological consequence of lysosomal targeting is not invariably positive; the CD4+ T-cell response induced by the GP61–80 epitope was almost abolished when attached to the LIMP-II tail. We identify the mechanism which underlies this marked difference in outcome. The GP61–80 epitope is highly susceptible to cleavage by cathepsin D, an aspartic endopeptidase found almost exclusively in lysosomes. We show, using mass spectrometry, that the GP61–80 peptide is cleaved between residues F74 and K75 and that this destroys its ability to stimulate virus-specific CD4+ T cells. Thus, the immunological result of lysosomal targeting varies, depending upon the primary sequence of the encoded antigen. We analyze the effects of CD4+ T-cell priming on the virus-specific antibody and CD8+ T-cell responses which are mounted after virus infection and show that neither response appears to be accelerated or enhanced. Finally, we evaluate the protective benefits of CD4+ T-cell vaccination in the LCMV model system; in contrast to DNA vaccine-induced CD8+ T cells, which can confer solid protection against LCMV challenge, DNA vaccine-mediated priming of CD4+ T cells does not appear to enhance the vaccinee's ability to combat viral challenge.

Documentos Relacionados