Carotid-aortic and renal baroreceptors mediate the atrial natriuretic peptide release induced by blood volume expansion.

AUTOR(ES)
RESUMO

Our previous studies have shown that stimulation of the anteroventral third ventricle (AV3V) region of the brain increases atrial natriuretic peptide (ANP) release, whereas lesions of the AV3V region or median eminence of the tuber cinereum block the release of ANP caused by blood volume expansion. These results suggest that participation of the central nervous system is critical to this response. The role of baroreceptors in the response was evaluated in the current research by studying the response of plasma ANP to blood volume expansion induced by intravenous injection of hypertonic saline solution (0.3 M NaCl, 2 ml/100 g of body weight, over 1 min) in conscious, freely moving male rats. Plasma samples were assayed for ANP by radioimmunoassay. In sham-operated rats, blood volume expansion induced a rapid increase in plasma ANP: the concentration peaked at 5 min and remained elevated at 15 min after saline injection. One week after deafferentation of the carotid-aortic baroreceptors, basal plasma ANP concentrations were highly significantly decreased on comparison with values of sham-operated rats; plasma ANP levels 5 min after blood volume expansion in the deafferented rats were greatly reduced. Unilateral right vagotomy reduced resting levels of plasma ANP but not the response to blood volume expansion; resting concentrations of plasma ANP and responses to expansion were normal in bilaterally vagotomized rats. In rats that had undergone renal deafferentation, resting levels of ANP were normal but the response to blood volume expansion was significantly suppressed. The evidence indicates that afferent impulses via the right vagus nerve may be important under basal conditions, but they are not required for the ANP release induced by blood volume expansion. In contrast, baroreceptor impulses from the carotid-aortic sinus regions and the kidney are important pathways involved in the neuroendocrine control of ANP release. The evidence from these experiments and our previous stimulation and lesion studies indicates that the ANP release in response to volume expansion is mediated by afferent baroreceptor input to the AV3V region, which mediates the increased ANP release via activation of the hypothalamic ANP neuronal system.

Documentos Relacionados