Caracterização óptica de dispersões aquosas de nanotubos de carbono

AUTOR(ES)
DATA DE PUBLICAÇÃO

2008

RESUMO

It has been demonstrated that the electronic and optical properties of single-wall carbon nanotubes (SWNT) are strongly affected by the environment. This strong environmental effect is very relevant in analyzing the composition of carbon nanotube samples using optical techniques, especially in the case of separation experiments, where the SWNT environments are generally very different before and after the separation process. In this context, this work aimed at studying the effects of different surrounding materials on the absorption and emission of light by the individualized SWNT suspended in water. The study was carried out with small-diameter HiPco SWNT (with diameters between 0.7 and 1.2 nm) which were dispersed in aqueous solutions of different dispersing agents: i) anionic surfactants sodium dodecyl sulfate (SDS), sodium dodecyl benzene sulfonate (NaDDBS) and sodium cholate (NaC); ii) DNA oligonucleotide poly d(GT)10. Samples were prepared with different concentrations of SWNT and surfactants and were analyzed by UV-vis-NIR optical absorption (OA), photoluminescence (PL) and photoluminescence excitation (PLE) spectroscopies. The energies of the emission and absorption peaks for the samples in the four different environments were obtained from PL maps and OA data. The optical transition energies for the nanotubes wrapped by the three surfactants (SDS, NaC and NaDDBS) present basically the same values, thereby indicating that the nanotubes experience a very similar chemical environment. On the other hand, the optical transition energies for DNA-wrapped nanotubes are redshifted by ~ 20 meV as compared to the surfactant-wrapped ones. This shift was associated to the change of dielectric environment because a smaller nanotube coverage by the DNA molecule as compared with those caused by the anionic surfactants. The surfactant molecules cover most of the nanotube surface while the DNA coverage is guided by the self-organization of DNA macromolecule around the nanotube in a helical conformation. The higher exposure of the nanotube surface to the water molecules in DNA system is responsible for the increase in the effective dielectric constant and, consequently, for the redshift in the optical transition energies due to excitonic effects. We have also focused our attention on the role played by the type of surfactant, surfactant concentration, and SWNT concentration on the efficiency of the emission of light by the suspended nanotubes. Based on the fact that the OA intensity is proportional to the concentration of nanotubes in the solution, while the PL signal is quenched when SWNT are aggregated into bundles, it was demonstrated in this work that the ratio between PL and OA intensities gives comparative information on emission efficiency. The PL/OA ratio can be associated, as a first approximation, with the relative amount of isolated nanotubes in the solution, since a nanotube dispersion which presents a high isolated/bundle ratio is expected to maximize the light emission efficiency. SWNT and surfactant concentrations are strongly related to the emission efficiency since different aggregation states are obtained when different concentrations of SWNT and surfactant are used for dispersing SWNT in water. Using this approach, it was possible to determine the best conditions to improve the PL efficiency of SWNT dispersions here investigated. Experimental results have shown that the SWNT concentration follows the sequence: NaDDBS

ASSUNTO(S)

propriedades óptica carbon nanotechnolgy nanotubos nanotecnologia nanotubes nanostructures carbono nanoestruturas optical properties quimica do estado condensado

Documentos Relacionados