Caracterização de ligas magnéticas sinterizadas para aplicação em núcleos de máquinas elétricas rotativas


IBICT - Instituto Brasileiro de Informação em Ciência e Tecnologia




The purpose of this work is to study the properties of ferromagnetic alloys obtained by Powder Metallurgy to construct cores of Rotary Electric Machines, usually mounted on rolled steel sheets. To perform these activities, iron power and their alloys obtained by a mixture with different percentages of phosphorus (1, 2 and 3%), silicon (1, 3 and 5%) and nickel (50%) were used. The powders were compacted in dies and then the test specimens were sintered in an oven at controlled temperatures When the material was characterized, histeresis curves were traced, which present magnetic properties inferior to those of the sheet cores. However, smaller losses were observed from parasite currents as a result of resistivity increased by adding phosphorus, silicon and nickel to the iron alloys. In simulations of a rotary electric machine with permanent magnets, specifically belonging to a servomotor, the results were compared between the cores of rolled sheets and those of ferromagnetic materials in single blocks, using FEMM 4.2 (Finite Element Method Magnetics) software. The results of the alloy Fe1%P presented some values close to torque and flow density as related to the traditional cores of rolled sheets. In the trials on magnetic losses in cores, in the form of a transformer, it was observed that at low frequencies the sintered material presented significant losses. On the other hand, at high frequencies it behaved similarly to the sheet cores. It was thus demonstrated that the materials studied can constitute a viable alternative to construct cores of Rotary Electric Machines for special application, such as servomotors, high velocity motors and minimotors.


metalurgia do pó ligas de ferro máquinas elétricas rotativas ensaios de materiais

Documentos Relacionados