Caracterização das propriedades ópticas não lineares de vidros teluretos, líquidos orgânicos e colóides de nanopartículas de ouro. / Characterization of the nonlinear optical properties, nonlinear refraction, thermo-optical coefficient, photonics-nonlinear materials.

AUTOR(ES)
DATA DE PUBLICAÇÃO

2008

RESUMO

Nesta tese, investigamos as propriedades ópticas não lineares de quatro sistemas físicos distintos: vidros teluretos, óleo de mamona, líquidos iônicos e colóides de nanopartículas de ouro. Utilizando as técnicas de varredura Z (Z-scan) e varredura de intensidade (I-scan) foi possível determinar os valores das contribuições de origem eletrônica (n2e) e térmica (n2t) do índice de refração não linear dos sistemas estudados, bem como avaliar os seus respectivos coeficientes termo-ópticos (dn/dT). Usamos a técnica de varredura de intensidade para caracterizar cinco amostras de vidros teluretos com diferentes composições. Neste experimento utilizamos um laser de Titânio de Safira operando no regime modelocked, sintonizado em , emitindo pulsos de de duração, com a taxa de repetição ajustada em através de um seletor de pulsos. Os vidros apresentaram uma não linearidade auto-focalizadora ultra-rápida. A figura de mérito 810 nm 200 fs 1 kHz max 0 W= Δn λα foi avaliada, ea condição foi obtida para quatro das cinco amostras estudadas, demonstrando a potencialidade destes vidros para aplicações em chaveamento totalmente óptico ultra-rápido, por exemplo. O óleo de mamona é um composto orgânico natural com uma ampla gama de aplicações na indústria. No campo da nanotecnologia, este óleo tem sido explorado como um agente dispersante e estabilizante muito eficiente para sistemas coloidais de nanopartículas metálicas de ouro. Entretanto, existe uma carência de dados na literatura acerca das propriedades ópticas não lineares deste material. Neste trabalho, utilizamos a técnica de varredura Z para medir a resposta óptica não linear do óleo de mamona para excitações em 514 nm e 810 nm. Na região visível, as medidas foram realizadas no regime CW, utilizando um laser argônio. No infravermelho, um laser de Titânio de Safira, operando no regime modelocked, produzindo pulsos de , com baixa ( ) e alta ( ) taxa de repetição foi utilizado. O óleo de mamona apresentou uma refração não linear autodesfocalizadora, em ambos os comprimentos de onda. A influência das contribuições eletrônica e térmica para a não linearidade medida foi avaliada e os resultados obtidos indicam que os efeitos térmicos são os principais responsáveis pela refração não linear observada. O coeficiente termo-óptico (W >0,27 200 fs 1kHz 76 MHz dn dT ) deste composto também foi medido para os dois comprimentos de onda. Observamos que o dn dT do óleo de mamona é aproximadamente uma ordem de magnitude maior para a excitação sintonizada em 514 nm que em 810 nm. As propriedades ópticas não lineares de dois tipos de líquidos iônicos, BMI.BF4 e BMI.PF6, também foram investigadas. Estes materiais são sais orgânicos que se caracterizam por apresentar uma baixa temperatura de fusão e pressão de vapor desprezível. Apesar de possuir propriedades físico-químicas interessantes, e serem usados em diversas aplicações, suas propriedades ópticas não lineares foram pouco investigadas. Neste trabalho, usamos a técnica de varredura Z para excitação em 514 nm e 810 nm. Ambos os líquidos iônicos apresentaram uma grande não linearidade auto-desfocalizadora, de origem térmica. Observamos que a mudança do ânion pelo ânion modifica as propriedades ópticas destes compostos. Os líquidos iônicos também apresentaram uma dispersão nos seus coeficientes termo-ópticos no intervalo espectral estudado. Apesar de ser um problema para o desenvolvimento de dispositivos fotônicos ultra-rápidos, não linearidades termo-ópticas podem apresentar um caráter de não localidade como uma conseqüência do processo de condução de calor. Efeitos não lineares em meios não locais vêm sendo abordados em diversos ramos da física, em particular em fenômenos de propagação não linear de pulsos de luz, e na geração e interação de sólitons espaciais. Os resultados obtidos sugerem que tanto o óleo de mamona, quanto os líquidos iônicos são candidatos promissores para investigação de efeitos não lineares não locais. Na caracterização dos sistemas coloidais de nanopartículas de ouro dispersas em óleo de mamona avaliamos o índice de refração não linear, coeficiente de absorção não linear, bem como o coeficiente termo-óptico em função do fator de preenchimento f. Fazendo uso da técnica de varredura Z, para o laser de excitação sintonizado em , observamos que os colóides apresentaram uma resposta refrativa não linear autodesfocalizadora ultra-rápida. Utilizando o modelo de Maxwell-Garnett generalizado para materiais compostos foi possível explicar o comportamento do índice de refração não linear do colóide em função do fator de preenchimento, bem como estimar o valor da parte real da susceptibilidade não linear de terceira ordem das nanopartículas de ouro. Observamos também que a presença de nanopartículas de ouro dispersas no óleo de mamona aumentou o valor absoluto do coeficiente de absorção linear, do índice refração não linear de origem térmica e do coeficiente termo-óptico. Nossos resultados indicam que a presença de nanopartículas de ouro altera significativamente as respostas não lineares locais e não locais de um sistema coloidal. Desta forma, a quantidade de nanopartículas é um fator extremamente importante para o desenvolvimento de novos materiais nanoestruturados visando aplicações ópticas tanto ultra-rápidas, quanto não locais.

ASSUNTO(S)

propriedades ópticas não lineares nonlinear optical properties nonlinear refraction photonics-nonlinear materials thermo-optical coefficient refração não linear fotônica materiais não lineares coeficiente termo-óptico nonlinear optical Óptica não linear fisica da materia condensada

Documentos Relacionados