Bunyamwera Virus Nonstructural Protein NSs Counteracts Interferon Regulatory Factor 3-Mediated Induction of Early Cell Death

AUTOR(ES)
FONTE

American Society for Microbiology

RESUMO

The genome of Bunyamwera virus (BUN; family Bunyaviridae, genus Orthobunyavirus) consists of three segments of negative-sense RNA. The smallest segment, S, encodes two proteins, the nonstructural protein NSs, which is nonessential for viral replication and transcription, and the nucleocapsid protein N. Although a precise role in the replication cycle has yet to be attributed to NSs, it has been shown that NSs inhibits the induction of alpha/beta interferon, suggesting that it plays a part in counteracting the host antiviral defense. A defense mechanism to limit viral spread is programmed cell death by apoptosis. Here we show that a recombinant BUN that does not express NSs (BUNdelNSs) induces apoptotic cell death more rapidly than wild-type virus. Screening for apoptosis pathways revealed that the proapoptotic transcription factor interferon regulatory factor 3 (IRF-3) was activated by both wild-type BUN and BUNdelNSs infection, but only wild-type BUN was able to suppress signaling downstream of IRF-3. Studies with a BUN minireplicon system showed that active replication induced an IRF-3-dependent promoter, which was suppressed by the NSs protein. In a cell line (P2.1) defective in double-stranded RNA signaling due to low levels of IRF-3, induction of apoptosis was similar for wild-type BUN and BUNdelNSs. These data suggest that the BUN NSs protein can delay cell death in the early stages of BUN infection by inhibiting IRF-3-mediated apoptosis.

Documentos Relacionados