Bremsstrahlung de elétrons no microtron do IFUSP: medidas, simulação e proposta de aplicação ao estudo da ressonância fluorescente nuclear / Electron Bremssthahlung in the IFUSP microton: measurements, simulation and proposal for a nuclear resonance fluorescence observation setup

AUTOR(ES)
FONTE

IBICT - Instituto Brasileiro de Informação em Ciência e Tecnologia

DATA DE PUBLICAÇÃO

20/06/2011

RESUMO

The results of the first experiments carried out in the new electron accelerator of the Linear Accelerator Laboratory (LAL) of the Physics Institute of Universidade de São Paulo are reported here. A 1.9 MeV beam line, which allows the use of the injector beam for experimental physics, was added to the original accelerator design. Electron bremsstrahlung spectra for Ag and Au thin targets observed at 30o and 60o with respect to the beam direction were collected in a HPGe coaxial detector, whose dimensions, including crystal inner hole dimensions and dead layer thickness, were estimated by means of combined experimental measurements and Monte Carlo simulations with the MCNP code, to evaluate the detector response function to perform the deconvolution of the spectrum. Cross sections for bremsstrahlung yield were determined for the entire measured energy range (100 1910 keV) and for the tip region (1700 1970 keV). The results in the tip region are in agreement with MCNPX and PENELOPE predictions. The possible causes for the disagreement at energies lower than 1800 keV are discussed. The design of a Nuclear Resonance Fluorescence (NRF) setup, aiming the study of dipolar excitations in nuclei with bremsstrahlung photons when the Microtron electron energy reaches 10 MeV, is also shown. The setup was designed with the characteristics of the Microtron building and facilities in mind, and searches to minimize the radiation caused by scattered photons and neutrons from photonuclear reactions. The behavior of the NRF setup elements: converter, collimator, detector shielding and photon beam dump, were studied by simulation as functions of their characteristics dimensions, shapes, materials using the MCNPX code. The spectral intensity to be observed by the photon detector in the designed NRF setup with a 27Al reference target, typical for NRF measurements, was assessed by simulation and shows the feasibility of this sort of experiment with the Microtron.

ASSUNTO(S)

bremssthahlung bremsstkahlung monte carlo monte carlo nuclear resonance fluorescence ressonância fluorescente nuclear

Documentos Relacionados