Both conserved region 1 (CR1) and CR2 of the human papillomavirus type 16 E7 oncogene are required for induction of epidermal hyperplasia and tumor formation in transgenic mice.

AUTOR(ES)
RESUMO

High-risk human papillomavirus type 16 (HPV-16) and HPV-18 are associated with the majority of human cervical carcinomas, and two viral genes, HPV E6 and E7, are commonly found to be expressed in these cancers. The presence of HPV-16 E7 is sufficient to induce epidermal hyperplasia and epithelial tumors in transgenic mice. In this study, we have performed experiments in transgenic mice to determine which domains of E7 contribute to these in vivo properties. The human keratin 14 promoter was used to direct expression of mutant E7 genes to stratified squamous epithelia in mice. The E7 mutants chosen had either an in-frame deletion in the conserved region 2 (CR2) domain, which is required for binding of the retinoblastoma tumor suppressor protein (pRb) and pRb-like proteins, or an in-frame deletion in the E7 CR1 domain. The CR1 domain contributes to cellular transformation at a level other than pRb binding. Four lines of animals transgenic for an HPV-16 E7 harboring a CR1 deletion and five lines harboring a CR2 deletion were generated and were observed for overt and histological phenotypes. A detailed time course analysis was performed to monitor acute effects of wild-type versus mutant E7 on the epidermis, a site of high-level expression. In the transgenic mice with the wild-type E7 gene, age-dependent expression of HPV-16 E7 correlated with the severity of epidermal hyperplasia. Similar age-dependent patterns of expression of the mutant E7 genes failed to result in any phenotypes. In addition, the transgenic mice with a mutant E7 gene did not develop tumors. These experiments indicate that binding and inactivation of pRb and pRb-like proteins through the CR2 domain of E7 are necessary for induction of epidermal hyperplasia and carcinogenesis in mouse skin and also suggest a role for the CR1 domain in the induction of these phenotypes through as-yet-uncharacterized mechanisms.

Documentos Relacionados