Beyond Complementation. Map-Based Cloning in Chlamydomonas reinhardtii1[w]

AUTOR(ES)
FONTE

American Society of Plant Biologists

RESUMO

Chlamydomonas reinhardtii is an excellent model system for plant biologists because of its ease of manipulation, facile genetics, and the ability to transform the nuclear, chloroplast, and mitochondrial genomes. Numerous forward genetics studies have been performed in Chlamydomonas, in many cases to elucidate the regulation of photosynthesis. One of the resultant challenges is moving from mutant phenotype to the gene mutation causing that phenotype. To date, complementation has been the primary method for gene cloning, but this is impractical in several situations, for example, when the complemented strain cannot be readily selected or in the case of recessive suppressors that restore photosynthesis. New tools, including a molecular map consisting of 506 markers and an 8X-draft nuclear genome sequence, are now available, making map-based cloning increasingly feasible. Here we discuss advances in map-based cloning developed using the strains mcd4 and mcd5, which carry recessive nuclear suppressors restoring photosynthesis to chloroplast mutants. Tools that have not been previously applied to Chlamydomonas, such as bulked segregant analysis and marker duplexing, are being implemented to increase the speed at which one can go from mutant phenotype to gene. In addition to assessing and applying current resources, we outline anticipated future developments in map-based cloning in the context of the newly extended Chlamydomonas genome initiative.

Documentos Relacionados