Automatic in-vivo MRS signal quantification for the classification of brain tumors / Quantificação de sinais de MRS do cerebro in-vivo para classificação de tumores

AUTOR(ES)
DATA DE PUBLICAÇÃO

2008

RESUMO

The aim of this work was to study and validate techniques for pre-processing and quantificating Magnetic Resonance Spectroscopy data, obtained in vivo from the human brain, in order to get information clinically useful for the study and diagnosis of brain tumors. Therefore, a literature-based study of the technique was made, including a review of the Physics concepts involved, the data acquisition process in the scanner and the computational methods used to pre-process and quantificate the spectral data, as well as the biochemical aspects of the metabolites of interest in the human brain that can be detected by this technique. Special attention was given to the AMARES (Advanced Method for Accurate, Robust and Efficient Spectral fitting of MRS data) method for MRS data quantification, which was studied and applied to the quantification of data from control subjects and patients with brain tumors. The data came from a database of the Neuroimaging Laboratory (LNI - Hospital das Clinicas - UNICAMP). The quantification with AMARES was made through the jMRUI software (http://sermn02.uab.es/mrui/) [1], a public domain software for processing and quantification of MRS data. These results were compared to the results obtained with a manual quantification of the same data, previously done as part of the PhD thesis work of Dr. Andreia Vasconcellos (lecturer from the Radiology Department of the School of Medicine, UNICAMP) [2]. The agreement between the results from both quantification methods was verified, as well as the feasibility of using the automatic quantification results to differentiate among tumor types, besides differentiating between patients and controls. Results obtained by the automatic method were more accurate and consistent than those obtained by the manual method allowing a better classification. Additionally, in this work were included the results of the study of ex vivo and in vivo metabolic profiling in pediatric brain tumors using the HR-MAS (High Resolution Magic Angle Spinning) technique. This study was carried out in the Molecular Imaging Laboratory, School of Medicine at the University of Val?encia (Spain), within the Santander-Banespa Bank International Exchange Program

ASSUNTO(S)

nuclear magnetic resonance spectroscopy tumores intracranianos tumors - classification tumores - classificação metabonomica intracranial tumors espectroscopia de ressonancia magnetica nuclear metabonomics

Documentos Relacionados