ATP dependence of Na(+)-K+ pump of cold-sensitive and cold-tolerant mammalian red blood cells.

AUTOR(ES)
RESUMO

1. The ATP concentration of intact, cold-tolerant (ground squirrel) red cells and cold-sensitive (guinea-pig and human) red cells was monitored by use of the firefly tail, luciferin-luciferase assay. ATP kinetics of the pump in intact red blood cells was investigated by altering cell [ATP] by progressive depletion of ATP in the presence of 2-deoxy-D-glucose and then by measurement of ouabain-sensitive K+ influx at each level of [ATP] at various temperatures between 37 and 5 degrees C. Na(+)-K(+)-ATPase activity of broken membranes was also determined in parallel experiments using ouabain-sensitive release of 32P from [gamma-32P]ATP as a measure of activity. 2. Without depletion, there is no immediate decrease in [ATP] of intact cold-sensitive cells at low temperature (5 degrees C) at times when there are marked differences in the activities of the Na(+)-K+ pump of cold-tolerant and cold-sensitive cells. 3. At 37 degrees C Na(+)-K(+)-ATPase of all three species exhibited two components of ATP dependence at 37 degrees C, one with high velocity, low affinity, the other with low velocity, high affinity. Affinities of both components rose with cooling. 4. A similar, two component pattern was observed in intact guinea-pig and human red cells at 37 degrees C, except that the segment corresponding to the high affinity component had an apparent Km (Michaelis-Menten constant) 3- to 4-fold higher than that of the broken membrane preparation. 5. Cooling intact guinea-pig and human red cells decreased the apparent affinity of the high velocity, low affinity component for ATP, so that at 20 degrees C the value of Km approached or exceeded the levels of physiological ATP concentration. Below 20 degrees C only one component with values corresponding to that of the low velocity, high affinity component could be observed. 6. In intact ground squirrel cells only the low affinity, high velocity component was apparent between 37 and 5 degrees C. Its affinity for ATP rose with cooling between 37 and 5 degrees C.

Documentos Relacionados