ARQUITETURAS DE CRIPTOGRAFIA DE CHAVE PÚBLICA: ANÁLISE DE DESEMPENHO E ROBUSTEZ / PUBLIC-KEY CRYPTOGRAPHY ARCHITECTURES: PERFORMANCE AND ROBUSTNESS EVALUATION

AUTOR(ES)
FONTE

IBICT - Instituto Brasileiro de Informação em Ciência e Tecnologia

DATA DE PUBLICAÇÃO

15/04/2011

RESUMO

Given the evolution of the data communication field, and the resulting increase of the information flow in data, networks security became a major concern. Modern cryptographic methods are mathematically reliable. However their implementation in hardware leaks confidential information through side-channels like power consumption and electromagnetic emissions. Although performance issues are crucial for a hardware design, aspects of robustness against attacks based on side-channel informations have gained much attention in recent years. This work focuses on hardware architectures based on the RSA public-key algorithm, originally proposed in 1977 by Rivest, Shamir and Adleman. This algorithm has the modular exponentiation as its main operation and it is performed through successive modular multiplications. Because the RSA involves integers of 1024 bits or more, the inherent division of modular multiplications became the main concern. The Montgomery algorithm, proposed in 1985, is a largely used method for hardware designs of modular multiplications, because it avoids divisions and all operations are performed in a multiple-precision context with all terms represented in a numerical base, generally, a power of two. This dissertation proposes a systolic architecture able to perform the Montgomery modular multiplication with multiple-precision arithmetic. Following, an improvement to the systolic architecture is presented, through an architecture that computes the Montgomery multiplication by multiplexing the multi-precision arithmetic processes. The multiplexed architecture is employed in the left-to-right square-and-multiply and square-and-multiply always modular exponentiation methods and is subjected to SPA (Simple Power Analysis) and SEMA (Simple Electromagnetic Analysis) side-channel attacks and robustness aspects are analysed. Different word sizes (numerical bases) are applied as well as different input operands. As an improvement to SPA and SEMA attacks, the power consumption and electromagnetic traces are demodulated in amplitude to eliminate the clock harmonics influence in the acquired traces. Finally, interpretations, conclusions and countermeasure propositions to the multiplexed architecture against the implemented side-channel attacks are presented.

ASSUNTO(S)

side-channel attacks ataques por canais laterais multiplicação modular de montgomery exponenciação modular rsa criptografia de chave pública ciencia da computacao public-key cryptography rsa modular exponentiation, montgomery modular multiplication

Documentos Relacionados