Arginine and pyrimidine biosynthetic defects in Neisseria gonorrhoeae strains isolated from patients.

AUTOR(ES)
RESUMO

Neisseria gonorrhoeae strains with nutritional requirements that include arginine (Arg-), uracil (Ura-), and hypoxanthine have attracted attention because of their tendency to cause disseminated infections, as a basis for genetic studies of arginine and pyrimidine biosynthesis, we examined the activities of four enzymes of these pathways in cell-free extracts of both prototrophic and Arg- Ura- strains. Activities of glutamate acetyltransferase, aspartate transcarbamylase, and orotate phosphoribosyltransferase, encoded respectively by argE, pyrB, and pyrE, were absent in some Arg- Ura- isolates. Gonococci that were unable to utilize ornithine for growth in place of citrulline lacked activity of carbamyl phosphate synthetase (encoded by car). Defects of car imposed requirements for both citrulline (or arginine) and a pyrimidine because of the dual role of carbamyl phosphate in the two pathways. Defects of argE, car, pyrB, and pyrE were separately introduced by genetic transformation into representatives of a gonococcal strain which initially was prototrophic. Results of enzyme assays of these isogenic auxotrophic transformants confirmed the gene-enzyme relationships.

Documentos Relacionados