Antagonistic activity of the food-related filamentous fungus Penicillium nalgiovense by the production of penicillin.

AUTOR(ES)
RESUMO

Defined strains of the genus Penicillium used as starter cultures for food and strains isolated from mold-fermented foods were analyzed for their ability to inhibit the growth of Micrococcus luteus DSM 348 used as an indicator organism. Most of the strains belonging to the species Penicillium nalgiovense showed antagonistic activity in agar diffusion assays. Penicillium camemberti and Penicillium roqueforti strains proved to be inactive in these tests. The inhibitory substance excreted by P. nalgiovense strains was totally inactivated when treated with beta-lactamase (penicillinase), indicating that a beta-lactam antibiotic is produced by these strains. This observation was verified by PCRs with primer sets specific to the [delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine] synthetase gene (pcbAB), the isopenicillin-N-synthase gene (pcbC), and the acyl coenzyme A:6-aminopenicillanic acid acyltransferase gene (penDE) from Penicillium chrysogenum using chromosomal DNA of the fungal strains as a template. These results indicate that penicillin biosynthesis is a characteristic often found in strains of P. nalgiovense. No specific PCR signal could be identified with DNA from P. camemberti and P. roqueforti.

Documentos Relacionados